Analogies between Quantum Theory and Relativity

Posted on 8 February 2008

0


Some aspects of measurement in quantum theory can be illuminated by analogies with relativity theory. For example, consider the classic double-slit experiment and a single photon which “measures” which slit a particle goes through. When one considers the particle-plus-photon system, the photon does not actually collapse the wave function so that it is localized in just one region of space. It merely entangles itself with the particle.  Provided no decoherence has taken place, the coherence of the original system is not washed out in many degrees of freedom of the measurement system. As a result, there is no sense in which an irreversible measurement interaction has taken place. So one is still free to decide what will ultimately be measured. Because there has not been any interaction with a particular well-defined measurement apparatus (by which I mean a device that involves decoherence) the attributes of the system are likewise still undefined.

The above situation with regard to a quantum system is analogous to not having defined any particular well-defined reference frame in relativity. If I do not specify a reference frame for an observation of a monolith floating in space, then it has no definite well-defined value for various properties such as velocity, mass and length. Once the reference frame is specified, however, then one can meaningfully talk about definite values for these quantities. Similarly, once one specifies a particular measurement apparatus (that involves decoherence), then one can say there is a well-defined meaning to talking about certain properties. The coherence is lost and there is no practical possibility to erase that measurement choice after the interaction with the measurement apparatus and choose instead to measure a complementary observable. And all observers will agree on what is measured.

In connection with this, Pauli has this interesting statement:

Just as in the theory of relativity a group of mathematical transformations connects all possible coordinate systems, so in quantum mechanics a group of mathematical transformations connects the possible experimental arrangements.

And Bohr writes:

In neither case [of quantum theory or relativity theory] does the appropriate widening of our conceptual framework imply any appeal to the observing subject, which would hinder unambiguous communication of experience. In relativistic argumentation, such objectivity is secured by due regard to the dependence of the phenomena on the reference frame of the observer, while in complementary description all subjectivity is avoided by proper attention to the circumstances required for the well-defined use of elementary physical concepts.

Admittedly, the analogy with relativity only goes so far. In the case of relativity, the choice of reference frame is sufficient to provide a unique and definite value for physical attributes. In quantum systems, on the other hand, although the interaction with a particular decohering measurement apparatus gives a particular observable well-defined meaning, it still does not result in a definite value (i.e., the wavefunction is not collapsed). The analogy with relativity, it seems, is a similarity between the choice of reference frame and the choice of a particular decohering measurement apparatus. These choices are sufficient to give well-defined meaning to certain physical quantities. The difference seems to be that in quantum theory, even though the quantities may have well-defined meaning, they still have not been actualized. For example, once the atom has interacted with the Geiger counter and poison bottle, it makes sense to say that Schrödiner’s cat is either alive or dead (there is no longer any coherence that would allow one to perform a measurement of a complementary observable to the alive/dead observable).

The actualization of a particular value could be described in terms of the many worlds interpretation as the choice of which world “you” get identified with. In relativity, though, one can actually imagine something analogous, but we don’t regard it as a mystery for some reason: The description of the world according to relativity does not specify which moment in spacetime we should be experiencing as “here and now”. So, what determines which point in Minkowski space is “actualized” in our experience as here and now? Why should we experience this here and now rather than some other? This question seems quite similar to the question of why we experience ourselves in one of the many worlds as opposed to some other. What “collapses” us into a particular here and now? Clearly, there is no such collapse, just as there is no collapse in quantum theory. The theory is an abstraction from the here and now. If we get confused and think that we really live in the abstraction, then we become perplexed at how the specific here and now is mysteriously “collapsed” from all the possibilities in the general, abstract world we’ve dreamed up.

There is also an interesting similarity between the role of decoherence, which effectively cuts us off from ever detecting any of the worlds that have decohered from ours, and space-like separation in relativity. There are spacelike separated regions of spacetime that can not have any interaction or communication with us. So, what justification is there for saying that they exist at all? They can never be observed or verified to exist. Is this really any different than the other branches of the universal wave function that we can no longer detect because of decoherence?

Advertisements
Posted in: Science